Discontinuity of Straightening in Anti-holomorphic Dynamics: I
نویسندگان
چکیده
It is well known that baby Mandelbrot sets are homeomorphic to the original one. We study Tricorns appearing in Tricorn, which connectedness locus of quadratic anti-holomorphic polynomials, and show dynamically natural straightening map from a Tricorn discontinuous at infinitely many explicit parameters. This first example discontinuity maps on real two-dimensional slice an analytic family holomorphic polynomials. The proof carried out by showing all non-real umbilical cords wiggle, settles conjecture made various people including Hubbard, Milnor, Schleicher.
منابع مشابه
Problems in Holomorphic Dynamics
Holomorphic dynamics posed several closely related key problems going back to Fatou and Julia: density of axiom A maps, local connectivity of the Julia and Mandelbrot sets, measure and dimension of the above sets. A great deal of progress has been achieved in these problems during the last decade, but they are still in the focus of modern reasearch. Most of the discussion in the chapter is conc...
متن کاملNonequilibrium dynamics of polymer translocation and straightening.
When a flexible polymer is sucked into a localized small hole, the chain can initially respond only locally and the sequential nonequilibrium processes follow in line with the propagation of the tensile force along the chain backbone. We analyze this dynamical process by taking the nonuniform stretching of the polymer into account both with and without hydrodynamics interactions. Earlier conjec...
متن کاملDiscrete Local Holomorphic Dynamics
1. Introduction Let M be a complex manifold, and p ∈ M. In this survey, a (discrete) holomorphic local dynamical system at p will be a holomorphic map f : U → M such that f (p) = p, where U ⊆ M is an open neighbourhood of p; we shall also assume that f ≡ id U. We shall denote by End(M, p) the set of holomorphic local dynamical systems at p.
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2021
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8381